Exercise 8

For the limit

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=2
$$

illustrate Definition 2 by finding values of δ that correspond to $\varepsilon=0.5$ and $\varepsilon=0.1$.

Solution

For $\varepsilon=0.5$, Definition 2 says that this limit is equivalent to

$$
\text { if } \quad 0<|x-0|<\delta \quad \text { then } \quad\left|\frac{e^{2 x}-1}{x}-2\right|<0.5
$$

for some positive δ.

As long as δ is less than about $0.215421-0 \approx 0.215421$, the distance from 2 on the y-axis will be less than 0.5 .

For $\varepsilon=0.1$, Definition 2 says that this limit is equivalent to

$$
\text { if } \quad 0<|x-0|<\delta \quad \text { then } \quad\left|\frac{e^{2 x}-1}{x}-2\right|<0.1
$$

for some positive δ.

As long as δ is less than about $0.0483998-0 \approx 0.0483998$, the distance from 2 on the y-axis will be less than 0.1.

